151 research outputs found

    Electromagnetic form factor via Minkowski and Euclidean Bethe-Salpeter amplitudes

    Full text link
    The electromagnetic form factors calculated through Euclidean Bethe-Salpeter amplitude and through the light-front wave function are compared with the one found using the Bethe-Salpeter amplitude in Minkowski space. The form factor expressed through the Euclidean Bethe-Salpeter amplitude (both within and without static approximation) considerably differs from the Minkowski one, whereas form factor found in the light-front approach is almost indistinguishable from it.Comment: 3 pages, 2 figures. Contribution to the proceedings of the 20th International Conference on Few-Body Problems in Physics (FB20), Pisa, Italy, September 10-14, 2007. To be published in "Few-Body Systems

    Use of ambient ionization high-resolution mass spectrometry for the kinetic analysis of organic surface reactions

    Get PDF
    In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, highthroughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that in principle allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne−azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate

    Bethe-Salpeter equation with cross-ladder kernel in Minkowski and Euclidean spaces

    Get PDF
    Some results obtained by a new method for solving the Bethe-Salpeter equation are presented. The method is valid for any kernel given by irreducible Feynman graphs. The Bethe-Salpeter amplitude, both in Minkowski and in Euclidean spaces, and the binding energy for ladder + cross-ladder kernel are found. We calculate also the corresponding electromagnetic form factor.Comment: 4 pages, 3 figures. Contribution to the proceedings of the 18th International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To be published in Nucl. Phys.

    Parametrization of Realistic Bethe-Salpeter Amplitude for the Deuteron

    Get PDF
    The parametrization of the realistic Bethe-Salpeter amplitude for the deuteron is given. Eight components of the amplitude in the Euclidean space are presented as an analytical fit to the numerical solution of the Bethe-Salpeter equation in the ladder approximation. An applicability of the parametrization to the observables of the deuteron is briefly discussed.Comment: LaTeX, 11 pages, 2 Postscript figures; Text of the Fortran program is available from the author by reques

    On the Relativistic Description of the Nucleus

    Full text link
    We discuss a relativistic theory of the atomic nuclei in the framework of the hamiltonian formalism and of the mesonic model of the nucleus. Attention is paid to the translational invariance of the theory. Our approach is centered on the concept of spectral amplitude, a function in the Dirac spinor space. We derive a Lorentz covariant equation for the latter, which requires as an input the baryon self-energy. For this we either postulate the most general Lorentz-Poincar\'e invariant expression or perform a calculation via a Bethe-Salpeter equation starting from a nucleon-nucleus interaction. We discuss the features of the nuclear spectrum obtained in the first instance. Finally the general constraints the self-energy should satisfy because of analyticity and Poincar\'e covariance are discussed

    Peripheral Nα\alpha Scattering: A Tool For Identifying The Two Pion Exchange Component Of The NN Potential

    Full text link
    We study elastic Nα\alpha scattering and produce a quantitative correlation between the range of the effective potential and the energy of the system. This allows the identification of the waves and energies for which the scattering may be said to be peripheral. We then show that the corresponding phase shifts are sensitive to the tail of the NN potential, which is due to the exchange of two pions. However, the present uncertainties in the experimental phase shifts prevent the use of Nα\alpha scattering to discriminate the existing models for the NN interaction.Comment: 19 pages, 6 PostScript figures, RevTeX, to be appear in Phys. Rev.

    Relativistic quasipotential equations with u-channel exchange interactions

    Get PDF
    Various quasipotential two-body scattering equations are studied at the one-loop level for the case of tt- and uu-channel exchange potentials. We find that the quasipotential equations devised to satisfy the one-body limit for the tt-channel exchange potential can be in large disagreement with the field-theoretical prediction in the case of uu-channel exchange interactions. Within the spectator model, the description of the uu-channel case improves if another choice of the spectator particle is made. Since the appropriate choice of the spectator depends strongly on the type of interaction used, one faces a problem when both types of interaction are contained in the potential. Equal-time formulations are presented, which, in the light-heavy particle system corresponding to the mass situation of the πN\pi N system, approximate in a reasonable way the field-theoretical result for both types of interactions.Comment: Revtex, 20 pages, 12 PostScript figures, to appear in Phys. Rev.

    Relativistic description of electron scattering on the deuteron

    Full text link
    Within a quasipotential framework a relativistic analysis is presented of the deuteron current. Assuming that the singularities from the nucleon propagators are important, a so-called equal time approximation of the current is constructed. This is applied to both elastic and inelastic electron scattering. As dynamical model the relativistic one boson exchange model is used. Reasonable agreement is found with a previous relativistic calculation of the elastic electromagnetic form factors of the deuteron. For the unpolarized inelastic electron scattering effects of final state interactions and relativistic corrections to the structure functions are considered in the impulse approximation. Two specific kinematic situations are studied as examples.Comment: (19 pages in revtex + 15 figures not included, available upon request.) report THU-93-10

    Relativistic effects and quasipotential equations

    Get PDF
    We compare the scattering amplitude resulting from the several quasipotential equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator, Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved numerically without decomposition into partial waves. We analyze both negative-energy state components of the propagators and retardation effects. We found that the scattering solutions of the Spectator and the Equal-Time equations are very close to the nonrelativistic solution even at high energies. The overall relativistic effect increases with the energy. The width of the band for the relative uncertainty in the real part of the scattering TT matrix, due to different dynamical equations, is largest for backward-scattering angles where it can be as large as 40%.Comment: Accepted for publication in Phys. Rev.

    Solving the inhomogeneous Bethe-Salpeter equation

    Full text link
    We develop an advanced method of solving homogeneous and inhomogeneous Bethe-Salpeter equations by using the expansion over the complete set of 4-dimensional spherical harmonics. We solve Bethe-Salpeter equations for bound and scattering states of scalar and spinor particles for the case of one meson exchange kernels. Phase shifts calculated for the scalar model are in agreement with the previously published results. We discuss possible manifestations of separability for one meson exchange interaction kernels.Comment: 9 pages, 11 eps-figures. Talk presented by S. S. Semikh at XVII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", September 27 - October 2, 2004, Dubna, Russia; to appear in the proceedings of this conferenc
    corecore